
aredis Documentation
Release 1.0.7

NoneGG

Mar 01, 2020

Contents

1 Installation 3

2 Getting started 5
2.1 single node client . 5
2.2 cluster client . 5

3 Dependencies & supported python versions 7

4 Supported python versions 9

5 API reference 11

6 The Usage Guide 13
6.1 API Reference . 13
6.2 Benchmark . 15
6.3 Publish / Subscribe . 16
6.4 Sentinel support . 19
6.5 LUA Scripting . 19
6.6 Pipelines . 20
6.7 Streams . 22
6.8 Extra . 23

7 The Community Guide 27
7.1 Testing . 27
7.2 Release Notes . 28
7.3 Author . 31
7.4 Project Contributors . 31
7.5 Licensing . 32
7.6 Todo list . 32

Index 33

i

ii

aredis Documentation, Release 1.0.7

An efficient and user-friendly async redis client ported from redis-py (which is a Python interface to the Redis key-
value). And the cluster part is ported from redis-py-cluster aredis is the async version of these to redis clients, with
effort to enable you using redis with asyncio more easily.

The source code is available on github.

Contents 1

https://pypi.python.org/pypi/aredis/
https://circleci.com/gh/NoneGG/aredis/tree/master
https://pypi.python.org/pypi/aredis/
https://github.com/andymccurdy/redis-py
https://github.com/Grokzen/redis-py-cluster
https://github.com/NoneGG/aredis

aredis Documentation, Release 1.0.7

2 Contents

CHAPTER 1

Installation

aredis requires a running Redis server.

To install aredis, simply:

$ pip3 install aredis

or alternatively (you really should be using pip though):

$ easy_install aredis

or from source:

$ python setup.py install

3

aredis Documentation, Release 1.0.7

4 Chapter 1. Installation

CHAPTER 2

Getting started

For more example

2.1 single node client

>>> import asyncio
>>> from aredis import StrictRedis
>>>
>>> async def example():
>>> client = StrictRedis(host='127.0.0.1', port=6379, db=0)
>>> await client.flushdb()
>>> await client.set('foo', 1)
>>> assert await client.exists('foo') is True
>>> await client.incr('foo', 100)
>>>
>>> assert int(await client.get('foo')) == 101
>>> await client.expire('foo', 1)
>>> await asyncio.sleep(0.1)
>>> await client.ttl('foo')
>>> await asyncio.sleep(1)
>>> assert not await client.exists('foo')
>>>
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(example())

2.2 cluster client

>>> import asyncio
>>> from aredis import StrictRedisCluster
>>>

(continues on next page)

5

https://github.com/NoneGG/aredis/tree/master/examples

aredis Documentation, Release 1.0.7

(continued from previous page)

>>> async def example():
>>> client = StrictRedisCluster(host='172.17.0.2', port=7001)
>>> await client.flushdb()
>>> await client.set('foo', 1)
>>> await client.lpush('a', 1)
>>> print(await client.cluster_slots())
>>>
>>> await client.rpoplpush('a', 'b')
>>> assert await client.rpop('b') == b'1'
>>>
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(example())
{(10923, 16383): [{'host': b'172.17.0.2', 'node_id': b
→˓'332f41962b33fa44bbc5e88f205e71276a9d64f4', 'server_type': 'master', 'port': 7002},
{'host': b'172.17.0.2', 'node_id': b'c02deb8726cdd412d956f0b9464a88812ef34f03',
→˓'server_type': 'slave', 'port': 7005}],
(5461, 10922): [{'host': b'172.17.0.2', 'node_id': b
→˓'3d1b020fc46bf7cb2ffc36e10e7d7befca7c5533', 'server_type': 'master', 'port': 7001},
{'host': b'172.17.0.2', 'node_id': b'aac4799b65ff35d8dd2ad152a5515d15c0dc8ab7',
→˓'server_type': 'slave', 'port': 7004}],
(0, 5460): [{'host': b'172.17.0.2', 'node_id': b
→˓'0932215036dc0d908cf662fdfca4d3614f221b01', 'server_type': 'master', 'port': 7000},
{'host': b'172.17.0.2', 'node_id': b'f6603ab4cb77e672de23a6361ec165f3a1a2bb42',
→˓'server_type': 'slave', 'port': 7003}]}

6 Chapter 2. Getting started

CHAPTER 3

Dependencies & supported python versions

hiredis and uvloop can make aredis faster, but it is up to you whether to install them or not.

• Optional Python: hiredis >= 0.2.0. Older versions might work but is not tested.

• Optional event loop policy: uvloop >= 0.8.0. Older versions might work but is not tested.

• A working Redis cluster based on version >= 3.0.0 is required. Only 3.0.x releases is supported.

7

aredis Documentation, Release 1.0.7

8 Chapter 3. Dependencies & supported python versions

CHAPTER 4

Supported python versions

• 3.5

• 3.6

Experimental:

• 3.7-dev

Note: Python < 3.5

I tried to change my code to make aredis compatible for Python under 3.5, but it failed because of some api of asyncio.
Since asyncio is stabilize from Python 3.5, i think it may be better to use the new release of asyncio.

Note: pypy

For now, uvloop is not supported by pypy, and you can only use it with cpython & hiredis to accelerate your code.
pypy 3.5-v5.8.0 is tesed and with it code can run twice faster than before.

9

aredis Documentation, Release 1.0.7

10 Chapter 4. Supported python versions

CHAPTER 5

API reference

Most API are described in ‘redis command reference<https://redis.io/commands>‘_ what makes difference and
those should be noticed are referred in doc specially. You can post a new issue / read redis command reference / read
annotation of API (mainly about how to use them) if you have any problem about the API. Related issue are welcome.

11

aredis Documentation, Release 1.0.7

12 Chapter 5. API reference

CHAPTER 6

The Usage Guide

6.1 API Reference

The connection part is rewritten to make client async, and most API is ported from redis-py. So most API and usage
are the same as redis-py. If you use redis-py in your code, just use async/await syntax with your code. for more
examples

The official Redis command documentation does a great job of explaining each command in detail. aredis only shift
StrictRedis class from redis-py that implement these commands. The StrictRedis class attempts to adhere to the official
command syntax. There are a few exceptions:

• SELECT: Not implemented. See the explanation in the Thread Safety section below.

• DEL: ‘del’ is a reserved keyword in the Python syntax. Therefore aredis uses ‘delete’ instead.

• CONFIG GET|SET: These are implemented separately as config_get or config_set.

• MULTI/EXEC: These are implemented as part of the Pipeline class. The pipeline is wrapped with the MULTI
and EXEC statements by default when it is executed, which can be disabled by specifying transaction=False.
See more about Pipelines below.

• SUBSCRIBE/LISTEN: Similar to pipelines, PubSub is implemented as a separate class as it places the under-
lying connection in a state where it can’t execute non-pubsub commands. Calling the pubsub method from the
Redis client will return a PubSub instance where you can subscribe to channels and listen for messages. You
can only call PUBLISH from the Redis client.

• SCAN/SSCAN/HSCAN/ZSCAN: The *SCAN commands are implemented as they exist in the Redis doc-
umentation. In addition, each command has an equivilant iterator method. These are purely for con-
venience so the user doesn’t have to keep track of the cursor while iterating. (Use Python 3.6 and the
scan_iter/sscan_iter/hscan_iter/zscan_iter methods for this behavior. iter functions are not supported in
Python 3.5)

6.1.1 Loop

The event loop can be set with the loop keyworkd argugment. If no loop is given the default event loop will be

13

https://github.com/NoneGG/aredis/tree/master/examples
https://github.com/NoneGG/aredis/tree/master/examples
http://redis.io/commands

aredis Documentation, Release 1.0.7

warning

asyncio.AbstractEventLoop is actually not thread safe and asyncio uses BaseDefaultEventLoopPolicy as default
event policy(which create new event loop instead of sharing event loop between threads, being thread safe to some
degree) So the StricRedis is still thread safe if your code works with default event loop. But if you customize event
loop yourself, please make sure your event loop is thread safe(maybe you should customize on the base of BaseDe-
faultEventLoopPolicy instead of AbstractEventLoop)

Detailed discussion about the problem is in issue20

>>> import aredis
>>> import asyncio
>>> loop = asyncio.get_event_loop()
>>> r = aredis.StrictRedis(host='localhost', port=6379, db=0, loop=loop)

6.1.2 Decoding

Param encoding and decode_responses are now used to support response encoding.

encoding is used for specifying with which encoding you want responses to be decoded. decode_responses is used
for tell the client whether responses should be decoded.

If decode_responses is set to True and no encoding is specified, client will use ‘utf-8’ by default.

6.1.3 Connections

ConnectionPools manage a set of Connection instances. aredis ships with two types of Connections. The default,
Connection, is a normal TCP socket based connection. The UnixDomainSocketConnection allows for clients running
on the same device as the server to connect via a unix domain socket. To use a UnixDomainSocketConnection
connection, simply pass the unix_socket_path argument, which is a string to the unix domain socket file. Additionally,
make sure the unixsocket parameter is defined in your redis.conf file. It’s commented out by default.

>>> r = redis.StrictRedis(unix_socket_path='/tmp/redis.sock')

You can create your own Connection subclasses as well. This may be useful if you want to control the socket behavior
within an async framework. To instantiate a client class using your own connection, you need to create a connection
pool, passing your class to the connection_class argument. Other keyword parameters you pass to the pool will be
passed to the class specified during initialization.

>>> pool = redis.ConnectionPool(connection_class=YourConnectionClass,
your_arg='...', ...)

6.1.4 Parsers

Parser classes provide a way to control how responses from the Redis server are parsed. aredis ships with two parser
classes, the PythonParser and the HiredisParser. By default, aredis will attempt to use the HiredisParser if you have
the hiredis module installed and will fallback to the PythonParser otherwise.

Hiredis is a C library maintained by the core Redis team. Pieter Noordhuis was kind enough to create Python bindings.
Using Hiredis can provide up to a 10x speed improvement in parsing responses from the Redis server. The performance
increase is most noticeable when retrieving many pieces of data, such as from LRANGE or SMEMBERS operations.

Hiredis is available on PyPI, and can be installed via pip or easy_install just like aredis.

14 Chapter 6. The Usage Guide

https://github.com/NoneGG/aredis/pull/20#issuecomment-285088890

aredis Documentation, Release 1.0.7

$ pip install hiredis

or

$ easy_install hiredis

6.1.5 Response Callbacks

The client class uses a set of callbacks to cast Redis responses to the appropriate Python type. There are a number of
these callbacks defined on the Redis client class in a dictionary called RESPONSE_CALLBACKS.

Custom callbacks can be added on a per-instance basis using the set_response_callback method. This method accepts
two arguments: a command name and the callback. Callbacks added in this manner are only valid on the instance the
callback is added to. If you want to define or override a callback globally, you should make a subclass of the Redis
client and add your callback to its REDIS_CALLBACKS class dictionary.

Response callbacks take at least one parameter: the response from the Redis server. Keyword arguments may also
be accepted in order to further control how to interpret the response. These keyword arguments are specified during
the command’s call to execute_command. The ZRANGE implementation demonstrates the use of response callback
keyword arguments with its “withscores” argument.

6.1.6 Thread Safety

Redis client instances can safely be shared between threads. Internally, connection instances are only retrieved from
the connection pool during command execution, and returned to the pool directly after. Command execution never
modifies state on the client instance.

However, there is one caveat: the Redis SELECT command. The SELECT command allows you to switch the database
currently in use by the connection. That database remains selected until another is selected or until the connection
is closed. This creates an issue in that connections could be returned to the pool that are connected to a different
database.

As a result, aredis does not implement the SELECT command on client instances. If you use multiple Redis databases
within the same application, you should create a separate client instance (and possibly a separate connection pool) for
each database.

It is not safe to pass PubSub or Pipeline objects between threads.

6.2 Benchmark

benchmark/comparation.py run on virtual machine(ubuntu, 4G memory and 2 cpu) with hiredis as parser

6.2.1 local redis server

num of
query/time

are-
dis(asyncio)

are-
dis(uvloop)

aiore-
dis(asyncio)

aiore-
dis(uvloop)

asyn-
cio_redis(asyncio)

asyn-
cio_redis(uvloop)

redis-
py

100 0.0190 0.01802 0.0400 0.01989 0.0391 0.0326 0.0111
1000 0.0917 0.05998 0.1237 0.05866 0.1838 0.1397 0.0396
10000 1.0614 0.66423 1.2277 0.62957 1.9061 1.5464 0.3944
100000 10.228 6.13821 10.400 6.06872 19.982 15.252 3.6307

6.2. Benchmark 15

aredis Documentation, Release 1.0.7

6.2.2 redis server in local area network

Only run with uvloop, or it will be too slow. Although it seems like that running code in synchronous way perform
more well than in asynchronous way, the point is that it won’t block the other code to run.

num of query/time aredis(uvloop) aioredis(uvloop) asyncio_redis(uvloop) redis-py
100 0.06998 0.06019 0.1971 0.0556
1000 0.66197 0.61183 1.9330 0.7909
10000 5.81604 6.87364 19.186 7.1334
100000 58.4715 60.9220 189.06 58.979

test result may change according to your computer performance and network (you may run the sheet yourself
to determine which one is the most suitable for you)

6.2.3 Advantage

1. aredis can be used howerver you install hiredis or not.

2. aredis’ API are mostly ported from redis-py, which is easy to use indeed and make it easy to port your code with
asyncio

3. according to my test, aredis is efficient enough (please run benchmarks/comparation.py to see which async redis
client is suitable for you)

4. aredis can be run both with asyncio and uvloop, the latter can double the speed of your async code.

6.3 Publish / Subscribe

aredis includes a PubSub object that subscribes to channels and listens for new messages. Creating a PubSub object is
easy.

>>> r = redis.StrictRedis(...)
>>> p = r.pubsub()

Once a PubSub instance is created, channels and patterns can be subscribed to.

>>> await p.subscribe('my-first-channel', 'my-second-channel', ...)
>>> await p.psubscribe('my-*', ...)

The PubSub instance is now subscribed to those channels/patterns. The subscription confirmations can be seen by
reading messages from the PubSub instance.

>>> await p.get_message()
{'pattern': None, 'type': 'subscribe', 'channel': 'my-second-channel', 'data': 1L}
>>> await p.get_message()
{'pattern': None, 'type': 'subscribe', 'channel': 'my-first-channel', 'data': 2L}
>>> await p.get_message()
{'pattern': None, 'type': 'psubscribe', 'channel': 'my-*', 'data': 3L}

Every message read from a PubSub instance will be a dictionary with the following keys.

• type: One of the following: ‘subscribe’, ‘unsubscribe’, ‘psubscribe’, ‘punsubscribe’, ‘message’, ‘pmessage’

• channel: The channel [un]subscribed to or the channel a message was published to

16 Chapter 6. The Usage Guide

aredis Documentation, Release 1.0.7

• pattern: The pattern that matched a published message’s channel. Will be None in all cases except for ‘pmes-
sage’ types.

• data: The message data. With [un]subscribe messages, this value will be the number of channels and patterns
the connection is currently subscribed to. With [p]message messages, this value will be the actual published
message.

Let’s send a message now.

the publish method returns the number matching channel and pattern
subscriptions. 'my-first-channel' matches both the 'my-first-channel'
subscription and the 'my-*' pattern subscription, so this message will
be delivered to 2 channels/patterns
>>> await r.publish('my-first-channel', 'some data')
2
>>> await p.get_message()
{'channel': 'my-first-channel', 'data': 'some data', 'pattern': None, 'type': 'message
→˓'}
>>> await p.get_message()
{'channel': 'my-first-channel', 'data': 'some data', 'pattern': 'my-*', 'type':
→˓'pmessage'}

Unsubscribing works just like subscribing. If no arguments are passed to [p]unsubscribe, all channels or patterns will
be unsubscribed from.

>>> await p.unsubscribe()
>>> await p.punsubscribe('my-*')
>>> await p.get_message()
{'channel': 'my-second-channel', 'data': 2L, 'pattern': None, 'type': 'unsubscribe'}
>>> await p.get_message()
{'channel': 'my-first-channel', 'data': 1L, 'pattern': None, 'type': 'unsubscribe'}
>>> await p.get_message()
{'channel': 'my-*', 'data': 0L, 'pattern': None, 'type': 'punsubscribe'}

aredis also allows you to register callback functions to handle published messages. Message handlers take a single
argument, the message, which is a dictionary just like the examples above. To subscribe to a channel or pattern with a
message handler, pass the channel or pattern name as a keyword argument with its value being the callback function.

When a message is read on a channel or pattern with a message handler, the message dictionary is created and passed
to the message handler. In this case, a None value is returned from get_message() since the message was already
handled.

>>> def my_handler(message):
... print('MY HANDLER: ', message['data'])
>>> await p.subscribe(**{'my-channel': my_handler})
read the subscribe confirmation message
>>> await p.get_message()
{'pattern': None, 'type': 'subscribe', 'channel': 'my-channel', 'data': 1L}
>>> await r.publish('my-channel', 'awesome data')
1
for the message handler to work, we need tell the instance to read data.
this can be done in several ways (read more below). we'll just use
the familiar get_message() function for now
>>> await message = p.get_message()
MY HANDLER: awesome data
note here that the my_handler callback printed the string above.
`message` is None because the message was handled by our handler.
>>> print(message)
None

6.3. Publish / Subscribe 17

aredis Documentation, Release 1.0.7

If your application is not interested in the (sometimes noisy) subscribe/unsubscribe confirmation messages, you can
ignore them by passing ignore_subscribe_messages=True to r.pubsub(). This will cause all subscribe/unsubscribe
messages to be read, but they won’t bubble up to your application.

>>> p = r.pubsub(ignore_subscribe_messages=True)
>>> await p.subscribe('my-channel')
>>> await p.get_message() # hides the subscribe message and returns None
>>> await r.publish('my-channel')
1
>>> await p.get_message()
{'channel': 'my-channel', 'data': 'my data', 'pattern': None, 'type': 'message'}

There are three different strategies for reading messages.

The examples above have been using pubsub.get_message(). If there’s data available to be read, get_message() will
read it, format the message and return it or pass it to a message handler. If there’s no data to be read, get_message()
will return None after the configured timeout (timeout should set to value larger than 0 or it will be ignore). This makes
it trivial to integrate into an existing event loop inside your application.

>>> while True:
>>> message = await p.get_message()
>>> if message:
>>> # do something with the message
>>> await asyncio.sleep(0.001) # be nice to the system :)

Older versions of aredis only read messages with pubsub.listen(). listen() is a generator that blocks until a message is
available. If your application doesn’t need to do anything else but receive and act on messages received from redis,
listen() is an easy way to get up an running.

>>> for message in await p.listen():
... # do something with the message

The third option runs an event loop in a separate thread. pubsub.run_in_thread() creates a new thread and use the event
loop in main thread. The thread object is returned to the caller of run_in_thread(). The caller can use the thread.stop()
method to shut down the event loop and thread. Behind the scenes, this is simply a wrapper around get_message() that
runs in a separate thread, and use asyncio.run_coroutine_threadsafe() to run coroutines.

Note: Since we’re running in a separate thread, there’s no way to handle messages that aren’t automatically handled
with registered message handlers. Therefore, aredis prevents you from calling run_in_thread() if you’re subscribed to
patterns or channels that don’t have message handlers attached.

>>> await p.subscribe(**{'my-channel': my_handler})
>>> thread = p.run_in_thread(sleep_time=0.001)
the event loop is now running in the background processing messages
when it's time to shut it down...
>>> thread.stop()

PubSub objects remember what channels and patterns they are subscribed to. In the event of a disconnection such as
a network error or timeout, the PubSub object will re-subscribe to all prior channels and patterns when reconnecting.
Messages that were published while the client was disconnected cannot be delivered. When you’re finished with a
PubSub object, call its .close() method to shutdown the connection.

>>> p = r.pubsub()
>>> ...
>>> p.close()

The PUBSUB set of subcommands CHANNELS, NUMSUB and NUMPAT are also supported:

18 Chapter 6. The Usage Guide

aredis Documentation, Release 1.0.7

>>> await r.pubsub_channels()
['foo', 'bar']
>>> await r.pubsub_numsub('foo', 'bar')
[('foo', 9001), ('bar', 42)]
>>> await r.pubsub_numsub('baz')
[('baz', 0)]
>>> await r.pubsub_numpat()
1204

6.4 Sentinel support

aredis can be used together with Redis Sentinel to discover Redis nodes. You need to have at least one Sentinel daemon
running in order to use aredis’s Sentinel support.

Connecting aredis to the Sentinel instance(s) is easy. You can use a Sentinel connection to discover the master and
slaves network addresses:

>>> from redis.sentinel import Sentinel
>>> sentinel = Sentinel([('localhost', 26379)], stream_timeout=0.1)
>>> await sentinel.discover_master('mymaster')
('127.0.0.1', 6379)
>>> await sentinel.discover_slaves('mymaster')
[('127.0.0.1', 6380)]

You can also create Redis client connections from a Sentinel instance. You can connect to either the master (for write
operations) or a slave (for read-only operations).

>>> master = sentinel.master_for('mymaster', stream_timeout=0.1)
>>> slave = sentinel.slave_for('mymaster', stream_timeout=0.1)
>>> master.set('foo', 'bar')
>>> slave.get('foo')
'bar'

The master and slave objects are normal StrictRedis instances with their connection pool bound to the Sentinel in-
stance. When a Sentinel backed client attempts to establish a connection, it first queries the Sentinel servers to de-
termine an appropriate host to connect to. If no server is found, a MasterNotFoundError or SlaveNotFoundError is
raised. Both exceptions are subclasses of ConnectionError.

When trying to connect to a slave client, the Sentinel connection pool will iterate over the list of slaves until it finds
one that can be connected to. If no slaves can be connected to, a connection will be established with the master.

See Guidelines for Redis clients with support for Redis Sentinel to learn more about Redis Sentinel.

6.5 LUA Scripting

aredis supports the EVAL, EVALSHA, and SCRIPT commands. However, there are a number of edge cases that make
these commands tedious to use in real world scenarios. Therefore, aredis exposes a Script object that makes scripting
much easier to use.

To create a Script instance, use the register_script function on a client instance passing the LUA code as the first
argument. register_script returns a Script instance that you can use throughout your code.

The following trivial LUA script accepts two parameters: the name of a key and a multiplier value. The script fetches
the value stored in the key, multiplies it with the multiplier value and returns the result.

6.4. Sentinel support 19

http://redis.io/topics/sentinel
http://redis.io/topics/sentinel-clients

aredis Documentation, Release 1.0.7

>>> r = redis.StrictRedis()
>>> lua = """
... local value = redis.call('GET', KEYS[1])
... value = tonumber(value)
... return value * ARGV[1]"""
>>> multiply = r.register_script(lua)

multiply is now a Script instance that is invoked by calling it like a function. Script instances accept the following
optional arguments:

• keys: A list of key names that the script will access. This becomes the KEYS list in LUA.

• args: A list of argument values. This becomes the ARGV list in LUA.

• client: A aredis Client or Pipeline instance that will invoke the script. If client isn’t specified, the client that
intiially created the Script instance (the one that register_script was invoked from) will be used.

Notice that the Srcipt.__call__ is no longer useful(async/await can’t be used in magic method), please use
Script.register instead

Continuing the example from above:

>>> await r.set('foo', 2)
>>> await multiply.execute(keys=['foo'], args=[5])
10

The value of key ‘foo’ is set to 2. When multiply is invoked, the ‘foo’ key is passed to the script along with the
multiplier value of 5. LUA executes the script and returns the result, 10.

Script instances can be executed using a different client instance, even one that points to a completely different Redis
server.

>>> r2 = redis.StrictRedis('redis2.example.com')
>>> await r2.set('foo', 3)
>>> multiply.execute(keys=['foo'], args=[5], client=r2)
15

The Script object ensures that the LUA script is loaded into Redis’s script cache. In the event of a NOSCRIPT error,
it will load the script and retry executing it.

Script objects can also be used in pipelines. The pipeline instance should be passed as the client argument when calling
the script. Care is taken to ensure that the script is registered in Redis’s script cache just prior to pipeline execution.

>>> pipe = await r.pipeline()
>>> await pipe.set('foo', 5)
>>> await multiply(keys=['foo'], args=[5], client=pipe)
>>> await pipe.execute()
[True, 25]

6.6 Pipelines

Pipelines are a subclass of the base Redis class that provide support for buffering multiple commands to the server in
a single request. They can be used to dramatically increase the performance of groups of commands by reducing the
number of back-and-forth TCP packets between the client and server.

Pipelines are quite simple to use:

20 Chapter 6. The Usage Guide

aredis Documentation, Release 1.0.7

>>> async def example(client):
>>> async with await client.pipeline(transaction=True) as pipe:
>>> # will return self to send another command
>>> pipe = await (await pipe.flushdb()).set('foo', 'bar')
>>> # can also directly send command
>>> await pipe.set('bar', 'foo')
>>> # commands will be buffered
>>> await pipe.keys('*')
>>> res = await pipe.execute()
>>> # results should be in order corresponding to your command
>>> assert res == [True, True, True, [b'bar', b'foo']]

For ease of use, all commands being buffered into the pipeline return the pipeline object itself. Which enable you to
use it like the example provided.

In addition, pipelines can also ensure the buffered commands are executed atomically as a group. This happens by
default. If you want to disable the atomic nature of a pipeline but still want to buffer commands, you can turn off
transactions.

>>> pipe = r.pipeline(transaction=False)

A common issue occurs when requiring atomic transactions but needing to retrieve values in Redis prior for use within
the transaction. For instance, let’s assume that the INCR command didn’t exist and we need to build an atomic version
of INCR in Python.

The completely naive implementation could GET the value, increment it in Python, and SET the new value back.
However, this is not atomic because multiple clients could be doing this at the same time, each getting the same value
from GET.

Enter the WATCH command. WATCH provides the ability to monitor one or more keys prior to starting a transaction.
If any of those keys change prior the execution of that transaction, the entire transaction will be canceled and a
WatchError will be raised. To implement our own client-side INCR command, we could do something like this:

>>> async def example():
>>> async with await r.pipeline() as pipe:
... while 1:
... try:
... # put a WATCH on the key that holds our sequence value
... await pipe.watch('OUR-SEQUENCE-KEY')
... # after WATCHing, the pipeline is put into immediate execution
... # mode until we tell it to start buffering commands again.
... # this allows us to get the current value of our sequence
... current_value = await pipe.get('OUR-SEQUENCE-KEY')
... next_value = int(current_value) + 1
... # now we can put the pipeline back into buffered mode with MULTI
... pipe.multi()
... pipe.set('OUR-SEQUENCE-KEY', next_value)
... # and finally, execute the pipeline (the set command)
... await pipe.execute()
... # if a WatchError wasn't raised during execution, everything
... # we just did happened atomically.
... break
... except WatchError:
... # another client must have changed 'OUR-SEQUENCE-KEY' between
... # the time we started WATCHing it and the pipeline's execution.
... # our best bet is to just retry.
... continue

6.6. Pipelines 21

aredis Documentation, Release 1.0.7

Note that, because the Pipeline must bind to a single connection for the duration of a WATCH, care must be taken to
ensure that the connection is returned to the connection pool by calling the reset() method. If the Pipeline is used as a
context manager (as in the example above) reset() will be called automatically. Of course you can do this the manual
way by explicitly calling reset():

>>> async def example():
>>> async with await r.pipeline() as pipe:
>>> while 1:
... try:
... await pipe.watch('OUR-SEQUENCE-KEY')
... ...
... await pipe.execute()
... break
... except WatchError:
... continue
... finally:
... await pipe.reset()

A convenience method named “transaction” exists for handling all the boilerplate of handling and retrying watch
errors. It takes a callable that should expect a single parameter, a pipeline object, and any number of keys to be
WATCHed. Our client-side INCR command above can be written like this, which is much easier to read:

>>> async def client_side_incr(pipe):
... current_value = await pipe.get('OUR-SEQUENCE-KEY')
... next_value = int(current_value) + 1
... pipe.multi()
... await pipe.set('OUR-SEQUENCE-KEY', next_value)
>>>
>>> await r.transaction(client_side_incr, 'OUR-SEQUENCE-KEY')
[True]

6.7 Streams

Stream is a new feature provided by redis.

Since not all commands related are released officially(some commands are only referred in stream introduction), you
should make sure you know about it before using the api, and the API may be changed in the future.

For now, according to command manual , only XADD, XRANGE, XREVRANGE, XLEN, XREAD, XREADGROUP,
XPENDING commands are released. But commands you can find in stream introduction are all supported in aredis,
you can try the new feature with it.

You can append entries to stream like code below:

>>> entry = dict(event=1, user='usr1')
>>> async def append_msg_to_stream(client, entry):
>>> stream_id = await client.xadd('example_stream', entry, max_len=10)
>>> return stream_id

notice - max length of the stream length will not be limited max_len is set to None - max_len should be int greater
than 0, if set to 0 or negative, the stream length will not be limited - The XADD command will auto-generate a unique
id for you if the id argument specified is the ‘*’ character.

You can use use read entries from a stream using XRANGE & XREVRANGE

22 Chapter 6. The Usage Guide

https://redis.io/topics/streams-intro
https://redis.io/commands#stream
https://redis.io/topics/streams-intro

aredis Documentation, Release 1.0.7

>>> async def fetch_entries(client, stream, count=10, reverse=False):
>>> # if you do know the range of stream_id, you can specify it when using xrange
>>> if reverse:
>>> entries = await client.xrevrange(stream, start='10-0', end='1-0',
→˓count=count)
>>> else:
>>> entries = await client.xrange(stream, start='1-0', end='10-0',
→˓count=count)
>>> return entries

Actually, stream feature is inspired by kafka, a stream can be consumed by consumer from a group, like code below:

>>> async def consuming_process(client):
>>> # create a stream firstly
>>> for idx in range(20):
>>> # give progressive stream id when create entry
>>> await client.xadd('test_stream', {'k1': 'v1', 'k2': 1}, stream_id=idx)
>>> # now create a consumer group
>>> # stream_id can be specified when creating a group,
>>> # if given '0', group will consume the stream from the beginning
>>> # if give '$', group will only consume newly appended entries
>>> await r.xgroup_create('test_stream', 'test_group', '0')
>>> # now consume the entries by 'consumer1' from group 'test_group'
>>> entries = await r.xreadgroup('test_group', 'consumer1', count=5, test_stream=
→˓'1')

6.8 Extra

6.8.1 Lock

For now Lock only support for single redis node, please don’t use it in cluster env.

There are two kinds of Lock class available for now, you can also make your own for special requirements.

lock(self, name, timeout=None, sleep=0.1, blocking_timeout=None, lock_class=None, thread_local=True)
Return a new Lock object using key name that mimics the behavior of threading.Lock.

If specified, timeout indicates a maximum life for the lock. By default, it will remain locked until release() is
called.

sleep indicates the amount of time to sleep per loop iteration when the lock is in blocking mode and another
client is currently holding the lock.

blocking_timeout indicates the maximum amount of time in seconds to spend trying to acquire the lock.
A value of None indicates continue trying forever. blocking_timeout can be specified as a float or integer,
both representing the number of seconds to wait.

lock_class forces the specified lock implementation.

thread_local indicates whether the lock token is placed in thread-local storage. By default, the token is
placed in thread local storage so that a thread only sees its token, not a token set by another thread. Consider the
following timeline:

time: 0, thread-1 acquires my-lock, with a timeout of 5 seconds. thread-1 sets the token to “abc”

time: 1, thread-2 blocks trying to acquire my-lock using the Lock instance.

time: 5, thread-1 has not yet completed. redis expires the lock key.

6.8. Extra 23

http://kafka.apache.org/

aredis Documentation, Release 1.0.7

time: 5, thread-2 acquired my-lock now that it’s available. thread-2 sets the token to “xyz”

time: 6, thread-1 finishes its work and calls release(). if the token is not stored in thread local
storage, then thread-1 would see the token value as “xyz” and would be able to successfully
release the thread-2’s lock.

In some use cases it’s necessary to disable thread local storage. For example, if you have code where one
thread acquires a lock and passes that lock instance to a worker thread to release later. If thread local storage
isn’t disabled in this case, the worker thread won’t see the token set by the thread that acquired the lock. Our
assumption is that these cases aren’t common and as such default to using thread local storage.

>>> async def example():
>>> client = aredis.StrictRedis()
>>> await client.flushall()
>>> lock = client.lock('lalala')
>>> print(await lock.acquire())
>>> print(await lock.acquire(blocking=False))
>>> print(await lock.release())
>>> print(await lock.acquire())
True
False
None
True

6.8.2 Cluster Lock

Cluster lock is supposed to solve distributed lock problem in redis cluster. Since high availability is
provided by redis cluster using master-slave model, the kind of lock aims to solve the fail-over problem
referred in distributed lock post given by redis official.

Why not use Redlock algorithm provided by official directly?

It is impossible to make a key hashed to different nodes in a redis cluster and hard to generate keys in a
specific rule and make sure they do not migrated in cluster. In the worst situation, all key slots may exists
in one node. Then the availability will be the same as one key in one node.

For more discussion please see: https://github.com/NoneGG/aredis/issues/55

To gather more ideas i also raise a problem in stackoverflow: Not_a_Golfer’s solution is awesome,
but considering the migration problem, i think this solution may be better. https://stackoverflow.com/
questions/46438857/how-to-create-a-distributed-lock-using-redis-cluster

My solution is described below:

1. random token + SETNX + expire time to acquire a lock in cluster master node

2. if lock is acquired successfully then check the lock in slave nodes(may there be N slave nodes) using
READONLY mode, if N/2+1 is synced successfully then break the check and return True, time used to
check is also accounted into expire time

3.Use lua script described in redlock algorithm to release lock with the client which has the randomly
generated token, if the client crashes, then wait until the lock key expired.

Actually you can regard the algorithm as a master-slave version of redlock, which is designed for multi
master nodes.

Please read these article below before using this cluster lock in your app. https://redis.
io/topics/distlock http://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html http://
antirez.com/news/101

24 Chapter 6. The Usage Guide

https://github.com/NoneGG/aredis/issues/55
https://stackoverflow.com/questions/46438857/how-to-create-a-distributed-lock-using-redis-cluster
https://stackoverflow.com/questions/46438857/how-to-create-a-distributed-lock-using-redis-cluster
https://redis.io/topics/distlock
https://redis.io/topics/distlock
http://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
http://antirez.com/news/101
http://antirez.com/news/101

aredis Documentation, Release 1.0.7

>>> async def example():
>>> client = aredis.StrictRedis()
>>> await client.flushall()
>>> lock = client.lock('lalala', lock_class=ClusterLock, timeout=1)
>>> print(await lock.acquire())
>>> print(await lock.acquire(blocking=False))
>>> print(await lock.release())
>>> print(await lock.acquire())
True
False
None
True

6.8.3 Cache

Cache has support for both single redis node and redis cluster.

There are two kinds of cache class(Cache & HerdCache) provided. Cache classes consists of IdentityGenerator(used
to generate unique identity in redis), Serializer(used to serialize content before compress and finally put in redis),
Compressor(used to compress cache to reduce memory usage of redis. IdentityGenerator, Serializer, Compressor can
be overwritten to meet your special needs, and if you don’t need it, just set them to None when intialize a cache:

cache(self, name, cache_class=Cache, identity_generator_class=IdentityGenerator, compres-
sor_class=Compressor, serializer_class=Serializer, *args, **kwargs)

Return a cache object using default identity generator, serializer and compressor.

name is used to identify the series of your cache

cache_class Cache is for normal use and HerdCache is used in case of Thundering Herd Problem

identity_generator_class is the class used to generate the real unique key in cache, can be overwritten
to meet your special needs. It should provide generate API

compressor_class is the class used to compress cache in redis, can be overwritten with API compress and
decompress retained.

serializer_class is the class used to serialize content before compress, can be overwritten with API
serialize and deserialize retained.

>>> class CustomIdentityGenerator(IdentityGenerator):
>>> def generate(self, key, content):
>>> return key
>>>
>>> def expensive_work(data):
>>> """some work that waits for io or occupy cpu"""
>>> return data
>>>
>>> async def example():
>>> client = aredis.StrictRedis()
>>> await client.flushall()
>>> cache = client.cache('example_cache',
>>> identity_generator_class=CustomIdentityGenerator)
>>> data = {1: 1}
>>> await cache.set('example_key', expensive_work(data), data)
>>> res = await cache.get('example_key', data)
>>> assert res == expensive_work(data)

For ease of use and expandability, only set, set_many, exists, delete, delete_many, ttl, get APIs are realized.

6.8. Extra 25

aredis Documentation, Release 1.0.7

HerdCache is a solution for thundering herd problem It is suitable for scene with low consistency and in which refresh
cache costs a lot. It will save redundant update work when there are multi process read cache from redis and the cache
is expired. If the cache is expired is judged by the expire time saved with each key, and the real expire time of the key
real_expire_time = the time key is set + expire_time + herd_timeout once a process find out that the cache is expired,
it will reset the expire time saved in redis with new_expire_time = the time key is found expired + extend_expire_time,
and return None(act like cache expired), so that other processes will not noticed the cache expired.

26 Chapter 6. The Usage Guide

https://en.wikipedia.org/wiki/Thundering_herd_problem

CHAPTER 7

The Community Guide

7.1 Testing

7.1.1 StrictRedis

All tests are built on the base of simplest redis server with default config.

Redis server setup

To test against the latest stable redis server from source, use:

$ sudo apt-get update
$ sudo apt-get install build-essential
$ sudo apt-get install tcl8.5
$ wget http://download.redis.io/releases/redis-stable.tar.gz
$ tar xzf redis-stable.tar.gz
$ cd redis-stable
$ make test
$ make install
$ sudo utils/install_server.sh
$ sudo service redis_6379 start

You can also use any version of Redis installed from your OS package manager (example for OSX: brew install
redis), in which case starting the server is as simple as running:

$ redis-server

7.1.2 StrictRedisCluster

All tests are currently built around a 6 redis server cluster setup (3 masters + 3 slaves). One server must be using port
7000 for redis cluster discovery. The easiest way to setup a cluster is to use Docker.

27

aredis Documentation, Release 1.0.7

Redis cluster setup

A fully functional docker image can be found at https://github.com/Grokzen/docker-redis-cluster

To turn on a cluster which should pass all tests, run:

$ docker run --rm -it -p7000:7000 -p7001:7001 -p7002:7002 -p7003:7003 -p7004:7004 -
→˓p7005:7005 -e IP='0.0.0.0' grokzen/redis-cluster:latest

7.1.3 Run test

To run test you should install dependency firstly.

$ pip install -r dev_requirements.txt
$ pytest tests/

7.2 Release Notes

7.2.1 master

• add TCP Keep-alive support by passing use the socket_keepalive=True option. Finer grain control can
be achieved using the socket_keepalive_options option which expects a dictionary with any of the keys
(socket.TCP_KEEPIDLE, socket.TCP_KEEPCNT, socket.TCP_KEEPINTVL) and integers for values. Thanks
Stefan Tjarks.

7.2.2 1.0.1

• add scan_iter, sscan_iter, hscan_iter, zscan_iter and corresponding unit tests

• fix bug of PubSub.run_in_thread

• add more examples

• change Script.register to Script.execute

7.2.3 1.0.2

• add support for cache (Cache and HerdCache class)

• fix bug of PubSub.run_in_thread

7.2.4 1.0.4

• add support for command pubsub channel, pubsub numpat and pubsub numsub

• add support for command client pause

• reconsitution of commands to make develop easier(which is transparent to user)

28 Chapter 7. The Community Guide

https://github.com/Grokzen/docker-redis-cluster

aredis Documentation, Release 1.0.7

7.2.5 1.0.5

• fix bug in setup.py when using pip to install aredis

7.2.6 1.0.6

• bitfield set/get/incrby/overflow supported

• new command hstrlen supported

• new command unlink supported

• new command touch supported

7.2.7 1.0.7

• introduce loop argument to aredis

• add support for command cluster slots

• add support for redis cluster

7.2.8 1.0.8

• fix initialization bug of redis cluster client

• add example to explain how to use client reply on | off | skip

7.2.9 1.0.9

• fix bug of pubsub, in some env AssertionError is raised because connection is used again after reader stream
being fed eof

• add reponse decoding related options(encoding & decode_responses), make client easier to use

• add support for command cluster forget

• add support for command option spop count

7.2.10 1.1.0

• sync optimization of scripting from redis-py made by bgreenberg related pull request

• sync bug fixed of geopos from redis-py made by categulario related pull request

• fix bug which makes pipeline callback function not executed

• fix error caused by byte decode issues in sentinel

• add basic transaction support for single node in cluster

• fix bug of get_random_connection reported by myrfy001

7.2. Release Notes 29

https://github.com/bgreenberg-eb
https://github.com/andymccurdy/redis-py/pull/867
https://github.com/categulario
https://github.com/andymccurdy/redis-py/pull/888

aredis Documentation, Release 1.0.7

7.2.11 1.1.1

• fix bug: connection with unread response being released to connection pool will lead to parse error, now this
kind of connection will be destructed directly. related issue

• fix bug: remove Connection.can_read check which may lead to block in awaiting pubsub message. Connec-
tion.can_read api will be deprecated in next release. related issue

• add c extension to speedup crc16, which will speedup cluster slot hashing

• add error handling for asyncio.futures.Cancelled error, which may cause error in response parsing.

• sync optimization of client list made by swilly22 from redis-py

• add support for distributed lock using redis cluster

7.2.12 1.1.2

• fix bug: redis command encoding bug

• optimization: sync change on acquring lock from redis-py

• fix bug: decrement connection count on connection disconnected

• fix bug: optimize code proceed single node slots

• fix bug: initiation error of aws cluster client caused by not appropiate function list used

• fix bug: use ssl_context instead of ssl_keyfile,ssl_certfile,ssl_cert_reqs,ssl_ca_certs in intialization of connec-
tion_pool

7.2.13 1.1.3

• allow use of zadd options for zadd in sorted sets

• fix bug: use inspect.isawaitable instead of typing.Awaitable to judge if an object is awaitable

• fix bug: implicitly disconnection on cancelled error (#84)

• new: add support for streams‘(including commands not officially released, see ‘streams)

7.2.14 1.1.4

• fix bug: fix cluster port parsing for redis 4+(node info)

• fix bug: wrong parse method of scan_iter in cluster mode

• fix bug: When using “zrange” with “desc=True” parameter, it returns a coroutine without “await”

• fix bug: do not use stream_timeout in the PubSubWorkerThread

• opt: add socket_keepalive options

• new: add ssl param in get_redis_link to support ssl mode

• new: add ssl_context to StrictRedis constructor and make it higher priority than ssl parameter

30 Chapter 7. The Community Guide

https://github.com/NoneGG/aredis/issues/52
https://github.com/NoneGG/aredis/issues/56
http://aredis.readthedocs.io/en/latest/streams.html

aredis Documentation, Release 1.0.7

7.2.15 1.1.5

• new: Dev conn pool max idle time (#111) release connection if max-idle-time exceeded

• update: discard travis-CI

• Fix bug: new stream id used for test_streams

7.2.16 1.1.6

• Fixbug: parsing stream messgae with empty payload will cause error(#116)

• Fixbug: Let ClusterConnectionPool handle skip_full_coverage_check (#118)

• New: threading local issue in coroutine, use contextvars instead of threading local in case of the safety of thread
local mechanism being broken by coroutine (#120)

• New: support Python 3.8

7.2.17 1.1.7

• Fixbug: ModuleNotFoundError raised when install aredis 1.1.6 with Python3.6

7.2.18 1.1.8

• Fixbug: connection is disconnected before idel check, valueError will be raised if a connection(not exist) is
removed from connection list

• Fixbug: abstract compat.py to handle import problem of asyncio.future

• Fixbug: When cancelling a task, CancelledError exception is not propagated to client

• Fixbug: XREAD command should accept 0 as a block argument

• Fixbug: In redis cluster mode, XREAD command does not function properly

• Fixbug: slave connection params when there are no slaves

7.3 Author

aredis is developed and maintained by Jason Chen (jason0916phoenix@gmail.com, please use 847671011@qq.com
in case your email is not responsed)

Most of its code come from redis-py written by Andy McCurdy (sedrik@gmail.com).

The cluster part is ported from redis-py-cluster written by Grokzen

7.4 Project Contributors

Added in the order they contributed. Thank you for your help to make aredis better!

Authors who contributed code or testing:

• inytar - https://github.com/inytar

7.3. Author 31

mailto:jason0916phoenix@gmail.com
mailto:847671011@qq.com
https://github.com/andymccurdy/redis-py
mailto:sedrik@gmail.com
https://github.com/Grokzen/redis-py-cluster
https://github.com/inytar

aredis Documentation, Release 1.0.7

• hqy - https://github.com/hqy

• melhin - https://github.com/melhin

• stj - https://github.com/stj

7.5 Licensing

Copyright (c) 2016 Jason Chen

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

7.6 Todo list

1. more detailed doc for cluster

2. more tests on cluster part

3. more commands supported

32 Chapter 7. The Community Guide

https://github.com/hqy
https://github.com/melhin
https://github.com/stj

Index

C
cache(), 25

L
lock(), 23

33

	Installation
	Getting started
	single node client
	cluster client

	Dependencies & supported python versions
	Supported python versions
	API reference
	The Usage Guide
	API Reference
	Benchmark
	Publish / Subscribe
	Sentinel support
	LUA Scripting
	Pipelines
	Streams
	Extra

	The Community Guide
	Testing
	Release Notes
	Author
	Project Contributors
	Licensing
	Todo list

	Index

